Explore l'apprentissage supervisé en mettant l'accent sur les méthodes de régression, y compris l'ajustement des modèles, la régularisation, la sélection des modèles et l'évaluation du rendement.
Couvre les bases de l'apprentissage automatique, l'apprentissage supervisé et non supervisé, diverses techniques comme les voisins k-nearest et les arbres de décision, et les défis de l'ajustement excessif.
Introduit des arbres de décision pour la classification, couvrant l'entropie, la qualité fractionnée, l'indice Gini, les avantages, les inconvénients, et le classificateur forestier aléatoire.
Explore les algorithmes de classification génératifs et discriminatifs, en mettant l'accent sur leurs applications et leurs différences dans les tâches d'apprentissage automatique.
Explore l'apprentissage supervisé en économétrie financière, en mettant l'accent sur les algorithmes de classification comme Naive Bayes et la régression logistique.
Couvre les arbres de décision pour la régression et la classification, expliquant la construction des arbres, la sélection des caractéristiques et les critères d'induction.
Couvre les fondamentaux des réseaux neuronaux multicouches et de l'apprentissage profond, y compris la propagation arrière et les architectures réseau comme LeNet, AlexNet et VGG-16.