Classifications structurées: Arbres de décision et renforcement
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les techniques de gestion des données manquantes et de normalisation des fonctionnalités, ainsi que la transformation des données d'entrée et de sortie.
Explore les applications d'apprentissage automatique dans la modélisation des matériaux, couvrant la régression, la classification et la sélection des fonctionnalités.
Couvre les forêts de décision, la formation, les apprenants faibles, l'entropie, la stimulation, l'estimation de pose 3D et les applications pratiques.
Explore les arbres de décision, l'ajustement excessif et la randomisation dans l'apprentissage supervisé, en soulignant l'importance de la gestion de la variance et de la sélection des fonctionnalités.
Explore les arbres de décision et de régression, les mesures d'impuretés, les algorithmes d'apprentissage et les implémentations, y compris les arbres d'inférence conditionnelle et la taille des arbres.
Explore les extrêmes de la capacité d'interprétation dans l'apprentissage automatique, en mettant l'accent sur les arbres de décision clairsemés et les réseaux neuraux interprétables.
Couvre la régression MAE, la coque convexe, les avantages de la reformulation et les problèmes pratiques liés aux variables et aux contraintes de décision.
Explore les arbres de décision, les ensembles, le CLT, l'inférence, l'apprentissage automatique, les méthodes de diagnostic, l'augmentation et l'estimation de la variance.