Confidentialité des données: Compression et protection
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les technologies de protection de la vie privée, la protection des données, les risques de surveillance et les technologies d'amélioration de la vie privée pour la vie privée sociale et institutionnelle.
Explore les défis et les perspectives en matière de protection des données dans la recherche sur la cybersanté, en mettant l'accent sur la conformité au RGPD, la gestion sensible des données de santé et les agents décentralisés.
Introduit des exercices Jupyter sur la confidentialité différentielle, couvrant les générateurs aléatoires, la compréhension de l'impact d'intrusion de données, et les applications pratiques.
Se penche sur l'application de l'apprentissage automatique dans les enquêtes sur les droits de l'homme, en mettant l'accent sur la transparence, la confiance et les considérations éthiques.
Se penche sur les aspects juridiques des appels d'offres en temps réel dans la publicité en ligne, en mettant l'accent sur les lois sur la protection des données, les défis de la gestion du consentement et les implications juridiques récentes.