Exponentielle de base aEn analyse réelle, l'exponentielle de base est la fonction notée exp qui, à tout réel x, associe le réel a. Elle n'a de sens que pour un réel a strictement positif. Elle étend à l'ensemble des réels la fonction, définie sur l'ensemble des entiers naturels, qui à l'entier n associe a. C'est donc la version continue d'une suite géométrique. Elle s'exprime à l'aide des fonctions usuelles exponentielle et logarithme népérien sous la forme Elle peut être définie comme la seule fonction continue sur R, prenant la valeur a en 1 et transformant une somme en produit.
Formule d'EulerLa formule d'Euler est une égalité mathématique, attribuée au mathématicien suisse Leonhard Euler. Elle s'écrit, pour tout nombre réel x, et se généralise aux x complexes. Ici, le nombre e est la base des logarithmes naturels, i est l'unité imaginaire, sin et cos sont des fonctions trigonométriques. Cette formule peut être interprétée en disant que la fonction x ↦ e, appelée fonction cis, décrit le cercle unité dans le plan complexe lorsque x varie dans l'ensemble des nombres réels.
Fonction trigonométriquethumb|upright=1.35|Toutes les valeurs des fonctions trigonométriques d'un angle θ peuvent être représentées géométriquement. En mathématiques, les fonctions trigonométriques permettent de relier les longueurs des côtés d'un triangle en fonction de la mesure des angles aux sommets. Plus généralement, ces fonctions sont importantes pour étudier les triangles et les polygones, les cercles (on les appelle alors fonctions circulaires) et modéliser des phénomènes périodiques.
Fonction hyperboliqueEn mathématiques, on appelle fonctions hyperboliques les fonctions cosinus hyperbolique, sinus hyperbolique et tangente hyperbolique. Les noms « sinus », « cosinus » et « tangente » proviennent de leur ressemblance avec les fonctions trigonométriques (dites « circulaires » car en relation avec le cercle unité x + y = 1) et le terme « hyperbolique » provient de leur relation avec l'hyperbole d'équation x – y = 1. Elles sont utilisées en analyse pour le calcul intégral, la résolution des équations différentielles mais aussi en géométrie hyperbolique.
Argument d'un nombre complexeUn argument d’un nombre complexe z non nul est une mesure (en radians, donc modulo 2π) de l'angle entre la demi-droite des nombres réels positifs (l'axe des abscisses) et celle issue de l'origine et passant par le point représenté par z (voir la figure ci-contre). Étant donné un nombre complexe z non nul, un argument de z est une mesure (en radians, donc modulo 2π) de l’angle : où M est l'image de z dans le plan complexe, c'est-à-dire le point d'affixe z.