Passer au contenu principal
Graph
Search
fr
|
en
Se Connecter
Recherche
Tous
Catégories
Concepts
Cours
Séances de cours
MOOCs
Personnes
Exercices
Publications
Start-ups
Unités
Afficher tous les résultats pour
Accueil
Séance de cours
Coordonner l'application dans les espaces vectoriaux
Graph Chatbot
Séances de cours associées (25)
Précédent
Page 1 sur 3
Suivant
Indépendance linéaire et bases
Couvre l'indépendance linéaire, les bases et les systèmes de coordination avec des exemples et des théorèmes.
Applications linéaires : Définitions et propriétés
Explore la définition et les propriétés des applications linéaires, en mettant l'accent sur l'injectivité, la surjectivité, le noyau et l'image, en mettant l'accent sur les matrices.
Indépendance linéaire et bases dans les espaces vectoriaux
Explique l'indépendance linéaire, les bases et la dimension dans les espaces vectoriels, y compris l'importance de l'ordre des vecteurs dans une base.
Espaces vectoriaux : propriétés et opérations
Couvre les propriétés et les opérations des espaces vectoriels, y compris l'addition et la multiplication scalaire.
Algèbre linéaire : matrices et espaces vectoriels
Couvre les noyaux matriciels, les images, les applications linéaires, l'indépendance et les bases dans les espaces vectoriels.
Coordonner les systèmes et les applications
Couvre la définition et l'utilisation de systèmes et d'applications de coordonnées dans les bases et les équations linéaires.
Algèbre linéaire : concepts abstraits
Introduit des concepts abstraits en algèbre linéaire, en se concentrant sur les opérations avec des vecteurs et des matrices.
Algèbre linéaire de base
Couvre les bases de l'algèbre linéaire, en mettant l'accent sur l'identification des sous-espaces à travers des propriétés clés.
Polynômes : Opérations et propriétés
Explore les opérations polynômes, les propriétés et les sous-espaces dans les espaces vectoriels.
Orthogonalité et relations subspatiales
Explore l'orthogonalité entre les vecteurs et les sous-espaces, démontrant des implications pratiques dans les opérations matricielles.