Séance de cours

Série Fourier : théorème de Dirichlet

Description

Cette séance de cours couvre le théorème de Dirichlet, qui permet de déduire la série de Fourier d'une fonction lorsqu'elle est continue. En commençant par un rappel sur les fonctions périodiques, l'instructeur explique comment trouver les coefficients de la série de Fourier en utilisant les conditions de Dirichlet. À travers des exemples, la séance de cours démontre l'application du théorème pour déterminer la série de Fourier de différentes fonctions. L'importance du théorème dans l'approximation des fonctions périodiques est soulignée, en mettant l'accent sur les conditions qui doivent être remplies pour son application. La séance de cours se termine par une discussion sur la signification du théorème de Dirichlet dans le contexte de l'analyse de Fourier.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.