Couvre la vectorisation en Python en utilisant Numpy pour un calcul scientifique efficace, en soulignant les avantages d'éviter les boucles et de démontrer des applications pratiques.
Explore les valeurs propres, les vecteurs propres et les méthodes de résolution de systèmes linéaires en mettant l'accent sur les erreurs d'arrondi et les matrices de préconditionnement.
Explore les méthodes itératives pour résoudre les systèmes linéaires, y compris les méthodes Jacobi et Gauss-Seidel, la factorisation Cholesky et le gradient conjugué préconditionné.
Explore la résolution de systèmes linéaires et aborde la non-linéarité dans les simulations de flux numériques en utilisant des méthodes multigrilles et de linéarisation.