Introduit des réseaux de flux, couvrant la structure du réseau neuronal, la formation, les fonctions d'activation et l'optimisation, avec des applications en prévision et finance.
Introduit des fondamentaux d'apprentissage profond, couvrant les représentations de données, les réseaux neuronaux et les réseaux neuronaux convolutionnels.
Couvre les réseaux neuronaux convolutifs, les architectures standard, les techniques de formation et les exemples contradictoires en apprentissage profond.
Introduit les réseaux de mémoire à long terme (LSTM) comme une solution pour la disparition et l'explosion des gradients dans les réseaux neuronaux récurrents.
Couvre les approches modernes du réseau neuronal en matière de PNL, en mettant l'accent sur l'intégration de mots, les réseaux neuronaux pour les tâches de PNL et les futures techniques d'apprentissage par transfert.
Couvre les modèles de séquence à séquence, leur architecture, leurs applications et le rôle des mécanismes d'attention dans l'amélioration des performances.