Explore l'évaluation environnementale systémique, l'analyse nationale des flux de matériaux et le développement d'un tableau de bord du métabolisme urbain pour Zurich à l'aide de données ouvertes.
Introduit le cours d'analyse des données appliquées à l'EPFL, couvrant un large éventail de sujets d'analyse des données et mettant l'accent sur l'apprentissage continu en sciences des données.
Couvre l'essentiel de la science des données, y compris le traitement, la visualisation et l'analyse des données, en mettant l'accent sur les compétences pratiques et l'engagement actif.
Couvre l'analyse des données sur la pollution atmosphérique, en se concentrant sur les bases de R, en visualisant des séries chronologiques et en créant des résumés des concentrations de polluants.
Présente la structure du cours et les concepts fondamentaux de l'apprentissage automatique, y compris l'apprentissage supervisé et la régression linéaire.
Couvre les principes fondamentaux de la science des données, en mettant l'accent sur la profondeur et l'application pratique dans l'apprentissage automatique et l'analyse de données.
Couvre les principes et les techniques de visualisation des données, en mettant l'accent sur la narration, la détection d'anomalies et la communication efficace des résultats.
Couvre l'analyse en composantes principales pour la réduction dimensionnelle des données biologiques, en se concentrant sur la visualisation et l'identification des modèles.
Explore les techniques et les applications de la visualisation des données, en soulignant l'importance d'une communication efficace et d'exemples non conventionnels.