Couvre les bases de l'apprentissage automatique, l'apprentissage supervisé et non supervisé, diverses techniques comme les voisins k-nearest et les arbres de décision, et les défis de l'ajustement excessif.
Introduit des arbres de décision pour la classification, couvrant l'entropie, la qualité fractionnée, l'indice Gini, les avantages, les inconvénients, et le classificateur forestier aléatoire.
Aborde l'ajustement excessif dans l'apprentissage supervisé par le biais d'études de cas de régression polynomiale et de techniques de sélection de modèles.
Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.
Explore le concept d'entropie exprimée en bits et sa relation avec les distributions de probabilité, en se concentrant sur le gain et la perte d'informations dans divers scénarios.
Introduit les bases de l'apprentissage automatique supervisé, couvrant les types, les techniques, le compromis biais-variance et l'évaluation du modèle.
Couvre les forêts de décision, la formation, les apprenants faibles, l'entropie, la stimulation, l'estimation de pose 3D et les applications pratiques.
Explore les arbres de décision, de l'induction à l'élagage, en mettant l'accent sur l'interprétabilité et les forces de sélection automatique des fonctionnalités, tout en abordant des défis tels que l'ajustement excessif.
Explore l'apprentissage supervisé en économétrie financière, couvrant la régression linéaire, l'ajustement du modèle, les problèmes potentiels, les fonctions de base, la sélection de sous-ensembles, la validation croisée, la régularisation et les forêts aléatoires.