Apprentissage Sparse Caractéristiques: Encombrant dans les réseaux neuraux
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des réseaux neuronaux, des fonctions d'activation et de rétropropagation pour la formation, en répondant aux défis et aux méthodes puissantes.
Couvre la représentation des données à l'aide de PCA pour la réduction de la dimensionnalité, en se concentrant sur la préservation du signal et l'élimination du bruit.
Explore comment les architectures modernes ont vaincu la malédiction de la dimensionnalité et l'importance de la stabilité dans les modèles d'apprentissage en profondeur.
Explore la surparamétrie, la généralisation, le surajustement, le sous-ajustement et la régularisation implicite dans les modèles d'apprentissage profond.
Explore les méthodes de descente de gradient pour l'entraînement des réseaux de neurones artificiels, couvrant l'apprentissage supervisé, les réseaux monocouches et les règles modernes de descente de gradient.