Couvre les modèles linéaires, y compris la régression, les dérivés, les gradients, les hyperplans et la transition de classification, en mettant laccent sur la minimisation des risques et des mesures dévaluation.
Présente les principes fondamentaux de la régression dans l'apprentissage automatique, couvrant la logistique des cours, les concepts clés et l'importance des fonctions de perte dans l'évaluation des modèles.
Introduit la modélisation fondée sur les données en mettant l'accent sur la régression, couvrant la régression linéaire, les risques de raisonnement inductif, l'APC et la régression des crêtes.
Explore les concepts avancés dans les modèles de régression linéaire, y compris la multicolinéarité, les tests d'hypothèses et les valeurs aberrantes de manipulation.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Explore les modèles paramétriques dans l'analyse des données, couvrant les estimateurs de régression, les problèmes d'optimisation et les modèles statistiques.