Types de neurones : Classification et diversité morphologique
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Se penche sur la simulation de la dynamique du réseau dans les neurosciences silico, couvrant l'activité spontanée et évoquée, les simulations in-vitro et in-vivo, et l'analyse de sensibilité.
Explore la classification des neurones dans les neurosciences silico, en mettant l'accent sur les défis dans la reconstruction des morphologies neuronales et l'importance de classifications précises.
Explore le modèle Hodgkin-Huxley, les phases de potentiel d'action, la dynamique ionique, la théorie des câbles et la modélisation compartimentale dans l'excitabilité neuronale.
Discute de l'assemblage des réseaux neuraux en définissant l'espace et en la populant avec des neurones, en mettant l'accent sur les défis et les stratégies pour des morphologies précises et de l'information sur le volume.
Explore le regroupement dans les réseaux de neurosciences silico, la définition de l'espace et le traitement des données rares pour reconstruire les régions du cerveau.
Couvre l'activité spontanée du réseau cérébral, la simulation neuronale et la validation, soulignant l'importance des conditions in-vitro et in-vivo pour une modélisation précise du réseau.
Explore les modèles de connectivité neuronale, les probabilités de connexion et les techniques expérimentales utilisées pour étudier la connectivité synaptique.
Introduit des approches et des applications modernes en neuroscience, mettant l'accent sur la modélisation computationnelle et son importance dans la compréhension du cerveau.
Explore différentes formes de plasticité synaptique et les mécanismes qui les sous-tendent, en mettant l'accent sur le rôle du calcium dans l'induction et le maintien des changements plastiques.