Introduit l'apprentissage supervisé, couvrant la classification, la régression, l'optimisation des modèles, le surajustement, et les méthodes du noyau.
Couvre les fondamentaux des réseaux neuronaux multicouches et de l'apprentissage profond, y compris la propagation arrière et les architectures réseau comme LeNet, AlexNet et VGG-16.
Couvre un examen des concepts d'apprentissage automatique, y compris l'apprentissage supervisé, la classification vs régression, les modèles linéaires, les fonctions du noyau, les machines vectorielles de soutien, la réduction de la dimensionnalité, les modèles génératifs profonds et la validation croisée.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Introduit k-Nearest Neighbors pour la classification et l'expansion des fonctionnalités pour gérer les données non linéaires via des entrées transformées.
Explore le surajustement, la validation croisée et la régularisation dans l'apprentissage automatique, en mettant l'accent sur la complexité du modèle et l'importance de la force de régularisation.
Introduit les bases de l'apprentissage supervisé, en mettant l'accent sur la régression logistique, la classification linéaire et la maximisation de la probabilité.
Explore l'apprentissage supervisé en économétrie financière, couvrant la régression linéaire, l'ajustement du modèle, les problèmes potentiels, les fonctions de base, la sélection de sous-ensembles, la validation croisée, la régularisation et les forêts aléatoires.
Introduit les bases de l'apprentissage automatique, couvrant l'apprentissage supervisé et non supervisé, la régression linéaire et la compréhension des données.