Introduit des variables aléatoires continues et leurs distributions de probabilité, en mettant l'accent sur leurs applications en statistique et en science des données.
Explorer l'analyse de la pollution atmosphérique à l'aide de données sur le vent, de distributions de probabilités et de modèles de trajectoire pour l'évaluation de la qualité de l'air.
Introduit les bases statistiques, y compris l'analyse des données et la théorie des probabilités, en mettant l'accent sur la tendance centrale, la dispersion et les formes de distribution.
S'inscrit dans les limites fondamentales de l'apprentissage par gradient sur les réseaux neuronaux, couvrant des sujets tels que le théorème binôme, les séries exponentielles et les fonctions génératrices de moments.