Explore l'ajustement de la courbe polynomiale, les fonctions du noyau et les techniques de régularisation, en soulignant l'importance de la complexité du modèle et du surajustement.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Couvre l'échantillonnage, la validation croisée, la quantification des performances, la détermination optimale du modèle, la détection des surajustements et la sensibilité de classification.
Couvre l'interprétation des estimations du risque de validation croisée et la construction d'un prédicteur final à partir des résultats de validation croisée.
Explore les logiciels validés pour la validation continue du système dans des environnements critiques pour la sécurité, en soulignant l'importance de l'assurance en temps réel anticipée et de la validation au niveau sémantique.
Explore l'apprentissage supervisé en économétrie financière, couvrant la régression linéaire, l'ajustement du modèle, les problèmes potentiels, les fonctions de base, la sélection de sous-ensembles, la validation croisée, la régularisation et les forêts aléatoires.