Explore la sélection, l'évaluation et la généralisation des modèles dans l'apprentissage automatique, en mettant l'accent sur l'estimation impartiale des performances et les risques de surapprentissage.
Couvre l'interprétation probabiliste de la régression logistique, la régression multinomiale, le KNN, les hyperparamètres et la malédiction de la dimensionnalité.