Passer au contenu principal
Graph
Search
fr
en
Se Connecter
Recherche
Tous
Catégories
Concepts
Cours
Séances de cours
MOOCs
Personnes
Exercices
Publications
Start-ups
Unités
Afficher tous les résultats pour
Accueil
Séance de cours
Théorie des nombres : GCD et LCM
Graph Chatbot
Séances de cours associées (28)
Précédent
Page 2 sur 3
Suivant
Factorisation des polynômes : complexité et algorithmes
Plonge dans la complexité de l'affacturage des polynômes et ses implications pour la sécurité.
Théorème fondamental de l'arithmétique
Couvre les nombres premiers, la décomposition unique des nombres naturels en facteurs premiers et les implications pratiques pour les calculs.
Principes fondamentaux de l'arithmétique : équivalence et irréductibilité
Couvre le théorème fondamental de l'arithmétique, en se concentrant sur l'équivalence et l'irréductibilité des entiers.
Polynômes : Racines et factorisation
Explore en profondeur les racines polynômes, la factorisation et l'algorithme euclidien.
Algèbre: Nombres entiers et principes
Introduit des nombres entiers, des principes d'induction, GCD, LCM et le théorème de Bezout.
Factorisation polynomiale : approche par champ
Couvre la factorisation des polynômes sur un champ, y compris la division avec le reste et les diviseurs communs.
Entiers et Anneaux
Couvre les entiers, les anneaux, les sous-anneaux, l'inversibilité, les diviseurs de zéro et les relations d'équivalence dans les fractions formelles.
Nombres complexes : Nombres de Gauss
Explore les entiers gaussiens, la factorisation primaire et les concepts de théorie des nombres liés aux nombres premiers.
Algorithme de Lenstra : factorisation entière
Couvre l'algorithme de Lenstra pour la factorisation des entiers, qui calcule efficacement les facteurs premiers d'un entier.
Factorisation polynomiale sur les champs Finite
Introduit la factorisation polynôme sur les champs finis et le calcul efficace des plus grands diviseurs communs des polynômes.