Couvre les fondamentaux des écosystèmes de big data, en se concentrant sur les technologies, les défis et les exercices pratiques avec le HDFS d'Hadoop.
Explore la régression logistique pour prédire les proportions de la végétation dans la région amazonienne grâce à l'analyse des données de télédétection.
Explore l'apprentissage automatique atomistique, intégrant les principes physiques dans les modèles pour prédire avec précision les propriétés moléculaires.
Présentation d'Apache Spark, couvrant son architecture, ses RDD, ses transformations, ses actions, sa tolérance aux pannes, ses options de déploiement et ses exercices pratiques dans les blocs-notes Jupyter.
Couvre la théorie des systèmes, le contrôle de rétroaction classique et les applications dans les bâtiments écologiques et les installations de réfrigération au gaz naturel.
Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.
Explore les données sur la consommation d'eau à Genève, y compris les graphiques sur la consommation et les pertes, les ensembles de données disponibles et les phases de traitement des données.