Apprentissage sans supervision : méthodes de regroupement
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la distribution 3D des galaxies, des amas de galaxies et de l'arrière-plan cosmique des micro-ondes, éclairant les contenus et les propriétés de l'univers observable.
Examine les méthodes de regroupement pour la partition des données en classes significatives lorsque l'étiquetage est inconnu, couvrant les moyennes K, les mesures de dissimilarité et le regroupement hiérarchique.
Explore le regroupement des données génomiques, l'analyse de la survie, l'identification des gènes et l'importance statistique dans la recherche sur le cancer.
Introduit des techniques de clustering d'apprentissage automatique non supervisées telles que K-means, Gaussian Mixture Models et DBSCAN, expliquant leurs algorithmes et leurs applications.
Explore l'analyse de la mémoire post mortem des personnalités publiques dans les nouvelles et les médias sociaux, en découvrant des idées importantes sur la formation de la mémoire.
Explore le suivi des connaissances bayésiennes, les modèles linéaires généralisés et les algorithmes de clustering pour la découverte de structures dans les données comportementales.
Explore les défis et les solutions dans l'analyse des grandes données multidimensionnelles, en mettant l'accent sur les types de données complexes et la détection d'anomalies.