Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le modèle Vector Space, le sac de mots, tf-idf, cosine similarité, Okapi BM25, et la précision et le rappel dans la récupération d'information.
Présente les bases de la récupération d'informations, couvrant la représentation de documents, l'expansion des requêtes et TF-IDF pour le classement des documents.
Introduit les bases de la recherche de l'information, couvrant la recherche par texte et booléen, la recherche de l'espace vectoriel et le calcul de la similitude.
Explore l'indexation sémantique latente dans la récupération d'information, en discutant des algorithmes, des défis dans la récupération spatiale vectorielle et des méthodes de récupération axées sur le concept.
Couvre les modèles probabilistes d'extraction, les mesures d'évaluation, la probabilité de la requête, la rétroaction sur la pertinence de l'utilisateur et l'expansion de la requête.
Introduit les bases de la recherche de l'information, en mettant l'accent sur la fréquence et la précision des documents dans l'évaluation de la qualité de la recherche.