Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.
Couvre les fondamentaux des systèmes de fichiers, se concentrant sur la gestion efficace des blocs persistants et la mise en œuvre des API système de fichiers.
Couvre les techniques de manipulation des données à l'aide de Hadoop, en se concentrant sur les bases de données axées sur les lignes et les colonnes, les formats de stockage populaires et l'intégration HBase-Hive.
Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.