Séance de cours

Apprentissage supervisé: Méthodes de régression

Séances de cours associées (350)
Ingénierie des caractéristiques: Régression polynomiale
Couvre en fonction de la régression linéaire sur les caractéristiques des prédicteurs d'origine pour la représentation flexible des caractéristiques.
Régression du noyau : Moyenne pondérée et cartes des caractéristiques
Couvre la régression du noyau et les cartes de caractéristiques pour la séparabilité des données.
Régression linéaire : bases et estimation
Couvre les bases de la régression linéaire et la façon de résoudre les problèmes d'estimation en utilisant les moindres carrés et la notation matricielle.
Apprentissage supervisé : Maximisation des probabilités
Couvre l'apprentissage supervisé par la maximisation de la probabilité pour trouver les paramètres optimaux.
Régression linéaire : basiques et descente progressive
Couvre les bases de la régression linéaire, y compris l'ingénierie des caractéristiques, l'apprentissage supervisé ou non supervisé, et minimise la fonction de coût.
Apprentissage supervisé : Algorithmes de classification
Explore l'apprentissage supervisé en économétrie financière, en mettant l'accent sur les algorithmes de classification comme Naive Bayes et la régression logistique.
Régression linéaire : Fondements
Couvre les bases de la régression linéaire, de la classification binaire et multiclasse, et des mesures d'évaluation.
Principes fondamentaux de l'apprentissage supervisé
Présente les principes fondamentaux de l'apprentissage supervisé, y compris les fonctions de perte et les distributions de probabilité.
Régression logistique : Fondements et applications
Explore les fondamentaux de régression logistique, y compris les fonctions de coût, la régularisation et les limites de classification, avec des exemples pratiques utilisant scikit-learn.
Introduction à l'apprentissage automatique: modèles linéaires
Introduit des modèles linéaires pour l'apprentissage supervisé, couvrant le suréquipement, la régularisation et les noyaux, avec des applications dans les tâches d'apprentissage automatique.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.