ErgodicityIn mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process.
Théorie ergodiquevignette|Flux d'un ensemble statistique dans le potentiel x6 + 4*x3 - 5x**2 - 4x. Sur de longues périodes, il devient tourbillonnant et semble devenir une distribution lisse et stable. Cependant, cette stabilité est un artefact de la pixellisation (la structure réelle est trop fine pour être perçue). Cette animation est inspirée d'une discussion de Gibbs dans son wikisource de 1902 : Elementary Principles in Statistical Mechanics, Chapter XII, p. 143 : « Tendance d'un ensemble de systèmes isolés vers un état d'équilibre statistique ».
Hypothèse ergodiqueL'hypothèse ergodique, ou hypothèse d'ergodicité, est une hypothèse fondamentale de la physique statistique. Elle fut formulée initialement par Ludwig Boltzmann en 1871 pour les besoins de sa théorie cinétique des gaz. Elle s'appliquait alors aux systèmes composés d'un très grand nombre de particules, et affirmait qu'à l'équilibre, la valeur moyenne d'une grandeur calculée de manière statistique est égale à la moyenne d'un très grand nombre de mesures prises dans le temps.
Processus ergodiqueUn est un processus stochastique pour lequel les statistiques peuvent être approchées par l'étude d'une seule réalisation suffisamment longue. Le théorème ergodique affirme que, sous condition, converge vers une limite pour presque toutes les réalisations , mais ne garantit pas l'égalité des à l'espérance . Un signal peut être: stationnaire mais non ergodique : par exemple le signal constant pour chaque réalisation. ergodique mais non stationnaire : par exemple le signal .
Processus stochastiqueUn processus ou processus aléatoire (voir Calcul stochastique) ou fonction aléatoire (voir Probabilité) représente une évolution, discrète ou à temps continu, d'une variable aléatoire. Celle-ci intervient dans le calcul classique des probabilités, où elle mesure chaque résultat possible (ou réalisation) d'une épreuve. Cette notion se généralise à plusieurs dimensions. Un cas particulier important, le champ aléatoire de Markov, est utilisé en analyse spatiale.