Traitement d'image I: quantification et analyse d'histogramme
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Se penche sur la formation et les applications des modèles Vision-Language-Action, en mettant l'accent sur le rôle des grands modèles linguistiques dans le contrôle robotique et le transfert des connaissances web. Les résultats des expériences et les orientations futures de la recherche sont mis en évidence.
Explore la conversion analogique-numérique, l'optimisation du signal neuronal, les architectures multicanaux et les techniques de compression sur puce en neuroingénierie.
Se concentre sur l'application pratique de la corrélation d'images numériques pour les ingénieurs civils, couvrant la mesure des champs de déplacement et le calcul des champs de contrainte.
Explore les techniques de réduction du bruit dans la métrologie électrique, couvrant les propriétés de la charge, du courant, de la tension, des sources de bruit et des méthodes de filtrage.
Explore des notions fondamentales dans le traitement d'images et de vidéos, couvrant des applications et des concepts clés comme la quantification des couleurs et les propriétés 2D Fourier Transform.
Explore la quantisation dans les appareils numériques, couvrant la quantification scalaire et uniforme, l'erreur carrée moyenne et le rapport signal-bruit.