Explore le modèle de perceptron multicouche, la formation, l'optimisation, le prétraitement des données, les fonctions d'activation, la rétropropagation et la régularisation.
Explore les mathématiques de l'apprentissage profond, les réseaux neuronaux et leurs applications dans les tâches de vision par ordinateur, en abordant les défis et le besoin de robustesse.
Explore les bases des réseaux neuraux, le problème XOR, la classification et les applications pratiques comme la prévision des données météorologiques.
Présente les réseaux neuronaux convolutifs, en expliquant leur architecture, leur processus de formation et leurs applications dans les tâches de segmentation sémantique.
Couvre les réseaux neuronaux convolutifs, les architectures standard, les techniques de formation et les exemples contradictoires en apprentissage profond.
Explore l'analyse stochastique de la descente et du champ moyen dans les réseaux neuraux à deux couches, en mettant l'accent sur leurs processus itératifs et leurs fondements mathématiques.
Couvre les Perceptrons multicouches, les neurones artificiels, les fonctions d'activation, la notation matricielle, la flexibilité, la régularisation, la régression et les tâches de classification.
Couvre le processus de formation d'un réseau neuronal, y compris l'avancement, la fonction de coût, la vérification des gradients et la visualisation des couches cachées.
Explore le compromis entre la complexité et le risque dans les modèles d'apprentissage automatique, les avantages de la surparamétrisation et le biais implicite des algorithmes d'optimisation.