Explore la régularisation dans des modèles linéaires, y compris la régression de crête et le Lasso, les solutions analytiques et la régression de crête polynomiale.
Examine la régression probabiliste linéaire, couvrant les probabilités articulaires et conditionnelles, la régression des crêtes et l'atténuation excessive.
Introduit l'apprentissage supervisé, couvrant la classification, la régression, l'optimisation des modèles, le surajustement, et les méthodes du noyau.
Couvre l'estimation, le rétrécissement et la pénalisation des statistiques pour la science des données, soulignant l'importance d'équilibrer le biais et la variance dans l'estimation des modèles.