Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les défis et les solutions pour gérer la dose d'électrons en microscopie, en soulignant l'importance d'un suivi et d'une analyse précis des doses.
Explore la modélisation détaillée des canaux ioniques et des morphologies neuronales dans les neurosciences silico, couvrant la classification des neurones, la cinétique des canaux ioniques et les observations expérimentales.
Explore l'informatique scientifique en neuroscience, en mettant l'accent sur la simulation des neurones et des réseaux à l'aide d'outils comme NEURON, NEST et BRIAN.
Explore la classification et les comportements électriques des interneurons GABAergiques dans le cortex cérébral, soulignant l'importance d'une terminologie cohérente et de la compréhension de la diversité des canaux ioniques.
Explore les modèles de connectivité neuronale, les probabilités de connexion et les techniques expérimentales utilisées pour étudier la connectivité synaptique.
Couvre les fondamentaux des signaux neuraux et du traitement des signaux, en mettant l'accent sur la modélisation et la simulation des systèmes neuraux.
Discute de l'assemblage des réseaux neuraux en définissant l'espace et en la populant avec des neurones, en mettant l'accent sur les défis et les stratégies pour des morphologies précises et de l'information sur le volume.
Explore le modèle Hodgkin-Huxley, les phases de potentiel d'action, la dynamique ionique, la théorie des câbles et la modélisation compartimentale dans l'excitabilité neuronale.