Introduit l'apprentissage non supervisé en cluster avec les moyennes K et la réduction de dimensionnalité à l'aide de PCA, ainsi que des exemples pratiques.
Couvre l'analyse des composantes principales pour la réduction de dimensionnalité, en explorant ses applications, ses limites et l'importance de choisir les composantes appropriées.
Couvre l'apprentissage non supervisé, en mettant l'accent sur la réduction de la dimensionnalité et le regroupement, en expliquant comment il aide à trouver des modèles dans les données sans étiquettes.
Couvre PCA et LDA pour la réduction de dimensionnalité, expliquant la maximisation de la variance, les problèmes de vecteurs propres et les avantages de Kernel PCA pour les données non linéaires.
Couvre l'analyse en composantes principales pour la réduction dimensionnelle des données biologiques, en se concentrant sur la visualisation et l'identification des modèles.