Souligne l’importance de la préparation aux données dans les interventions en cas de catastrophe et explore des stratégies pour combler les lacunes et les surcharges en matière d’information.
Explore l'évaluation environnementale systémique, l'analyse nationale des flux de matériaux et le développement d'un tableau de bord du métabolisme urbain pour Zurich à l'aide de données ouvertes.
Déplacez-vous dans le « virage numérique » de l'histoire, en examinant la recherche historique à l'aide de journaux numérisés et en explorant la réutilisation du texte, l'intégration des mots et la visualisation des données.
Introduit des outils collaboratifs de science des données comme Git et Docker, en mettant l'accent sur le travail d'équipe et les exercices pratiques pour un apprentissage efficace.
Couvre les fondamentaux des écosystèmes de big data, en se concentrant sur les technologies, les défis et les exercices pratiques avec le HDFS d'Hadoop.
Explore les techniques de visualisation des données, l'impact de la conception et les applications interactives pour une communication efficace de l'information.
Couvre les données neurosciences hétérogènes, les techniques comme les microarrays et le séquençage des gènes, l'intégration des données, et l'importance des métadonnées dans l'organisation et le partage des données.