Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Explore l'apprentissage supervisé en économétrie financière, en mettant l'accent sur les algorithmes de classification comme Naive Bayes et la régression logistique.
Explore l'apprentissage supervisé en mettant l'accent sur les méthodes de régression, y compris l'ajustement des modèles, la régularisation, la sélection des modèles et l'évaluation du rendement.
Introduit des arbres de décision pour la classification, couvrant l'entropie, la qualité fractionnée, l'indice Gini, les avantages, les inconvénients, et le classificateur forestier aléatoire.
Discute des arbres de décision et des forêts aléatoires, en se concentrant sur leur structure, leur optimisation et leur application dans les tâches de régression et de classification.
Couvre l'interprétation probabiliste de la régression logistique, la régression multinomiale, le KNN, les hyperparamètres et la malédiction de la dimensionnalité.