Séance de cours

Semi-martingale : Processus de variation articulaire

Description

Cette séance de cours couvre le concept de semimartingales, qui sont des processus représentés comme la somme d'un processus de variation continue et d'un processus de variation fini. Il explique le processus de variation articulaire et les conditions pour qu'une fonction soit une semi-martingale. La séance de cours s'inscrit également dans le lemma d'Ito et la démonstration des résultats pour les polynômes. L'importance de gérer les termes de deuxième ordre est soulignée, ainsi que le raisonnement d'induction appliqué tout au long des preuves.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.