Optimisation : descente de gradient et sous-gradients
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les méthodes d'optimisation RMSprop et ADAM dans les réseaux neuronaux artificiels, en se concentrant sur les fonctions d'erreur, l'élan et le rapport signal/bruit.
Explore la régression multilinéaire pour l'optimisation de la conception et l'orthogonalité, couvrant le travail d'équipe, les résumés, les modèles linéaires et quadratiques, ANOVA et les structures d'alias.
Discute des méthodes du noyau, en se concentrant sur les surajustements, la sélection des modèles et les fonctions du noyau dans l'apprentissage automatique.
Explore les compromis d'optimisation, la réduction de la variance, la dimension statistique et l'analyse de convergence dans les algorithmes d'optimisation.
Explore les algorithmes d'optimisation primal-dual pour les problèmes de minimax convexe-concave, en discutant des propriétés de convergence et des applications.
Explore les sujets avancés de Spark comme les stratégies de partitionnement, l'optimisation de la mémoire et les opérations de shuffle pour une exécution efficace des tâches.
Explore les techniques d'optimisation avancées pour les modèles d'apprentissage automatique, en se concentrant sur les méthodes de gradient adaptatifs et leurs applications dans les problèmes d'optimisation non convexe.