Règles d'apprentissage locales : Représentations et actions
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.
Discute des défis et de l'avenir de l'informatique neuromorphe, en comparant les ordinateurs numériques et le matériel spécialisé, comme SpiNNaker et NEST, tout en explorant la plate-forme informatique neuromorphe du projet Human Brain.
Explore la dynamique d'apprentissage des réseaux neuronaux profonds en utilisant des réseaux linéaires pour l'analyse, couvrant les réseaux à deux couches et à plusieurs couches, l'apprentissage autosupervisé et les avantages de l'initialisation découplée.
Couvre l'apprentissage hébbien, le renforcement de l'apprentissage, les types d'apprentissage, les modèles neuronaux, les règles d'apprentissage et l'homéostasie de poids.