NLP moderne: Collecte de données, annotation et anomalies
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Déplacez-vous dans des représentations neuro-symboliques pour la connaissance du sens commun et le raisonnement dans les applications de traitement du langage naturel.
Explore les mots, les jetons et les modèles de langage en PNL, couvrant les défis liés à leur définition, à l'utilisation du lexique, aux n-grammes et à l'estimation des probabilités.
En savoir plus sur l'apprentissage profond pour le traitement des langues naturelles, l'exploration de l'intégration des mots neuraux, des réseaux neuraux récurrents et de la modélisation des neurones avec les transformateurs.
Couvre l'architecture du transformateur, en se concentrant sur les modèles codeurs-décodeurs et les mécanismes d'attention subquadratiques pour un traitement efficace des séquences d'entrée.
Couvre les approches modernes du réseau neuronal en matière de PNL, en mettant l'accent sur l'intégration de mots, les réseaux neuronaux pour les tâches de PNL et les futures techniques d'apprentissage par transfert.