Introduit l'analyse de corrélation canonique pour trouver des caractéristiques communes dans des ensembles de données séparés, s'étendant aux données multimodales et aux caractéristiques non linéaires.
Couvre les concepts clés de l'analyse des composantes principales (APC) et ses applications pratiques dans la réduction de dimensionnalité des données et l'extraction des caractéristiques.
Couvre les concepts clés de l'APC, y compris la réduction de la dimensionnalité des données et des fonctions d'extraction, avec des exercices pratiques.
Couvre l'analyse des composantes principales pour la réduction de dimensionnalité, en explorant ses applications, ses limites et l'importance de choisir les composantes appropriées.
Explore la perception dans l'apprentissage profond pour les véhicules autonomes, couvrant la classification d'image, les méthodes d'optimisation, et le rôle de la représentation dans l'apprentissage automatique.