Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Se penche sur la simulation de la dynamique du réseau dans les neurosciences silico, couvrant l'activité spontanée et évoquée, les simulations in-vitro et in-vivo, et l'analyse de sensibilité.
Explore le concept de champ moyen stationnaire dans les neurosciences computationnelles pour prédire l'activité neuronale en fonction de la population et des taux de déclenchement d'un seul neurone.
Explore simulant des modèles de réseau neuronal à grande échelle et optimisant l'efficacité de la mémoire dans les simulations neuronales à l'aide de NEURON et de CoreNEURON.
Explore le concept de séparation des échelles de temps dans les neurosciences computationnelles et la réduction des détails dans les modèles neuronaux bidimensionnels.
Explore la modélisation détaillée des canaux ioniques et des morphologies neuronales dans les neurosciences silico, couvrant la classification des neurones, la cinétique des canaux ioniques et les observations expérimentales.
Explore l'informatique scientifique en neuroscience, en mettant l'accent sur la simulation des neurones et des réseaux à l'aide d'outils comme NEURON, NEST et BRIAN.