Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les outils collaboratifs de science des données, les concepts de big data, Spark, et le traitement du flux de données, avec des conseils pour le projet final.
Couvre les cadres de données Spark, les collections distribuées de données organisées en colonnes nommées, et les avantages de les utiliser sur les DDR.
Explore l'histoire numérique urbaine, en mettant l'accent sur l'évolution de Lausanne et l'impact des systèmes d'eau, de la topographie et des infrastructures de mobilité.
Se concentre sur les fonctions avancées de pandas pour la manipulation, l'exploration et la visualisation des données avec Python, en soulignant l'importance de la compréhension et de la préparation des données.
Explore les types booléens, les opérateurs logiques et les structures de contrôle en Python, en mettant l'accent sur l'évaluation des expressions et l'utilisation des opérateurs relationnels.
Présente des outils collaboratifs de science des données comme les carnets Jupyter, Docker et Git, mettant l'accent sur la version des données et la conteneurisation.