Couvre les meilleures pratiques et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture, les défis et les technologies comme Hadoop et Hive.
Explore les chaînes Markov, Metropolis-Hastings, et la simulation à des fins d'optimisation, soulignant l'importance de l'ergonomie dans la simulation variable efficace.
Déplacez-vous dans l'intersection de la physique et des données dans les modèles d'apprentissage automatique, couvrant des sujets tels que les champs d'expansion des grappes atomiques et l'apprentissage non supervisé.
Couvre la vue d'ensemble des systèmes d'information, la modélisation des données, la gestion des données et la distinction entre les données et l'information.
Introduit le cours d'analyse des données appliquées à l'EPFL, couvrant un large éventail de sujets d'analyse des données et mettant l'accent sur l'apprentissage continu en sciences des données.
Couvre les fondements des systèmes de base de données, y compris la modélisation des données, le traitement de l'information et les défis de la gestion d'importants volumes de données.
Couvre la conception et l'optimisation de bioprocédés à l'aide de MATLAB pour modéliser la cinétique des enzymes, la conception chimique et les bioréacteurs.
Explorer la résolution Connect Four en utilisant des algorithmes de théorie de jeu et compare la taille Alpha-Beta avec la recherche d'arbre Monte-Carlo.