Transformers: Unifier les communautés d'apprentissage automatique
Séances de cours associées (32)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les mathématiques des modèles de langues, couvrant la conception de l'architecture, la pré-formation et l'ajustement fin, soulignant l'importance de la pré-formation et de l'ajustement fin pour diverses tâches.
Explore l'évolution des mécanismes d'attention vers les transformateurs dans les NLP modernes, en soulignant l'importance de l'auto-attention et de l'attention croisée.
Explore les codeurs automatiques variables, l'inférence bayésienne, les espaces latents axés sur l'attention et l'efficacité des transformateurs dans le traitement des langues.
Explore les modèles Seq2Seq avec et sans mécanismes d'attention, couvrant l'architecture encodeur-décodeur, les vecteurs de contexte, les processus de décodage et les différents types de mécanismes d'attention.