Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Examine la régression probabiliste linéaire, couvrant les probabilités articulaires et conditionnelles, la régression des crêtes et l'atténuation excessive.
Déplacez-vous dans les probabilités, les statistiques, les paradoxes et les variables aléatoires, montrant leurs applications et propriétés du monde réel.
Couvre les concepts fondamentaux des probabilités et des statistiques, y compris les distributions, les propriétés et les attentes des variables aléatoires.
S'inscrit dans les limites fondamentales de l'apprentissage par gradient sur les réseaux neuronaux, couvrant des sujets tels que le théorème binôme, les séries exponentielles et les fonctions génératrices de moments.
Explore l'indépendance et la probabilité conditionnelle dans les probabilités et les statistiques, avec des exemples illustrant les concepts et les applications pratiques.
Explore les probabilités avancées, les variables aléatoires et les valeurs attendues, avec des exemples pratiques et des quiz pour renforcer l'apprentissage.
Couvre l'apprentissage supervisé en mettant l'accent sur la régression linéaire, y compris des sujets comme la classification numérique, la détection des pourriels et la prédiction de la vitesse du vent.