Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le concept de Knowledge Graphs et leur rôle dans l'intégration des données et la compréhension sémantique, montrant des exemples et des applications du monde réel.
Explore les ontologies populaires et les bases de connaissances telles que WordNet, WikiData, Google Knowledge Graph et Schema.org, ainsi que les ensembles de données ouvertes liées.
Déplacez-vous dans le Big Data en neurosciences, en analysant les grands ensembles de données et en abordant les défis de l'organisation, de la normalisation, de l'intégration et de la visualisation des données.
Explore les algorithmes et les techniques d'extraction de l'information, y compris l'algorithme Viterbi, la reconnaissance des entités nommées, et la surveillance lointaine.
Explore la représentation des connaissances, l'extraction de l'information et la vision du Web sémantique, en mettant l'accent sur la normalisation, la cartographie et les ontologies dans la structuration des données.
Explore les méthodes d'extraction de l'information, y compris les approches traditionnelles et fondées sur l'intégration, l'apprentissage supervisé, la surveillance à distance et l'induction taxonomique.
Explore l'extraction de connaissances à partir du texte, couvrant des concepts clés tels que l'extraction de phrases clés et la reconnaissance d'entités nommées.