Explore le rôle du calcul dans les mathématiques de données, en mettant l'accent sur les méthodes itératives, l'optimisation, les estimateurs et les principes d'ascendance.
Couvre le concept de descente de gradient dans les cas scalaires, en se concentrant sur la recherche du minimum d'une fonction en se déplaçant itérativement dans la direction du gradient négatif.
Explore les méthodes d'optimisation dans l'apprentissage automatique, en mettant l'accent sur les gradients, les coûts et les efforts informatiques pour une formation efficace des modèles.
Présente les méthodes Quasi-Newton pour l'optimisation, expliquant leurs avantages par rapport aux approches traditionnelles comme Gradient Descent et Newton's Method.
Explore les méthodes de descente de gradient pour les problèmes convexes lisses et non convexes, couvrant les stratégies itératives, les taux de convergence et les défis d'optimisation.
Explore l'optimalité des taux de convergence dans l'optimisation convexe, en mettant l'accent sur la descente accélérée des gradients et les méthodes d'adaptation.