Explore le surajustement, la régularisation et la validation croisée dans l'apprentissage automatique, soulignant l'importance de l'expansion des fonctionnalités et des méthodes du noyau.
Explore l'inférence statistique, la suffisance et l'exhaustivité, en soulignant l'importance de statistiques suffisantes et le rôle de statistiques complètes dans la réduction des données.
Explorer l'interprétation des modèles de régression logistique, l'estimation des paramètres et la comparaison des modèles à l'aide de tests de rapport de probabilité.
Couvre les bases du traitement du langage naturel, des approches traditionnelles aux approches modernes, soulignant les défis et l'importance d'étudier les deux méthodes.
Explore l'apprentissage supervisé en mettant l'accent sur les méthodes de régression, y compris l'ajustement des modèles, la régularisation, la sélection des modèles et l'évaluation du rendement.
Explore la cohérence prédictive dans les systèmes de prévision séquentielle, en mettant l'accent sur l'utilité de la prédiction sur l'estimation et sur l'importance des approches préalables.