Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les fondamentaux de régression logistique, y compris les fonctions de coût, la régularisation et les limites de classification, avec des exemples pratiques utilisant scikit-learn.
Se penche sur la formation et les applications des modèles Vision-Language-Action, en mettant l'accent sur le rôle des grands modèles linguistiques dans le contrôle robotique et le transfert des connaissances web. Les résultats des expériences et les orientations futures de la recherche sont mis en évidence.
Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.
Explore la régression logistique pour prédire les proportions de la végétation dans la région amazonienne grâce à l'analyse des données de télédétection.
Explore les défis du Big Data, l'informatique distribuée avec Spark, les RDD, la configuration matérielle requise, MapReduce, les transformations et Spark DataFrames.
Explore l'apprentissage automatique efficace par la synthèse des données, couvrant les défis, les méthodes et les applications impactées dans divers domaines.
Discute des solutions pour l'alignement des activités et des technologies de l'information et de l'importance de mettre les activités à jour en fonction des modèles de TI.