Couvre les techniques de manipulation des données à l'aide de Hadoop, en se concentrant sur les bases de données axées sur les lignes et les colonnes, les formats de stockage populaires et l'intégration HBase-Hive.
Couvre l'interprétation probabiliste de la régression logistique, la régression multinomiale, le KNN, les hyperparamètres et la malédiction de la dimensionnalité.
Explore la régression logistique pour la classification binaire, couvrant la modélisation des probabilités, les méthodes d'optimisation et les techniques de régularisation.
Explore les algorithmes de classification génératifs et discriminatifs, en mettant l'accent sur leurs applications et leurs différences dans les tâches d'apprentissage automatique.
Introduit l'apprentissage supervisé, couvrant la classification, la régression, l'optimisation des modèles, le surajustement, et les méthodes du noyau.
Couvre les principes fondamentaux de la science des données, l'évolution des méthodes scientifiques, le rôle d'un data scientist et l'importance des données en tant que nouveau pétrole.
Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.