Introduit des concepts fondamentaux d'apprentissage automatique, couvrant la régression, la classification, la réduction de dimensionnalité et des modèles générateurs profonds.
Explore les fondamentaux de l'apprentissage profond, y compris la classification de l'image, les principes de travail du réseau neuronal et les défis de l'apprentissage automatique.
Introduit des réseaux neuronaux, des fonctions d'activation et de rétropropagation pour la formation, en répondant aux défis et aux méthodes puissantes.
Explore la méthode de fonction aléatoire pour résoudre les PDE à l'aide d'algorithmes d'apprentissage automatique pour approximer efficacement les fonctions à haute dimension.
Se penche sur les perspectives géométriques des modèles d'apprentissage profond, explorant leur vulnérabilité aux perturbations et l'importance de la robustesse et de l'interprétabilité.
Explore l'apprentissage par renforcement profond basé sur des modèles, en se concentrant sur Monte Carlo Tree Search et ses applications dans les stratégies de jeu et les processus décisionnels.