Couvre la complexité algorithmique et l'analyse du temps de trajet, en se concentrant sur la mesure du temps pris par les algorithmes et l'évaluation de leurs performances.
Explore les aspects pratiques de la résolution des jeux de parité, y compris les stratégies gagnantes, les algorithmes, la complexité, le déterminisme et les approches heuristiques.
Explore la complexité algorithmique, en comparant les taux de croissance en utilisant la notation Theta et en caractérisant différentes classes de complexité.
Couvre les mécanismes d'attention subquadratiques et les modèles d'espace d'état, en se concentrant sur leurs fondements théoriques et leurs implémentations pratiques dans l'apprentissage automatique.
S'insère dans la théorie de la complexité, en se concentrant sur le problème P vs NP et la classification des problèmes informatiques en fonction de l'efficacité.
Explore la programmation dynamique du problème Knapsack, en discutant des stratégies, des algorithmes, de la dureté du NP et de l'analyse de la complexité temporelle.