Couvre les réseaux neuronaux convolutifs, les architectures standard, les techniques de formation et les exemples contradictoires en apprentissage profond.
Explore des modèles générateurs pour la prévision de trajectoires dans les véhicules autonomes, y compris des modèles discriminatifs vs générateurs, VAES, GANS, et des études de cas.
Explore les réseaux profonds et convolutifs, couvrant la généralisation, l'optimisation et les applications pratiques dans l'apprentissage automatique.
Déplacez-vous dans le biais spectral des réseaux neuronaux polynômes, analysez l'impact sur l'apprentissage des différentes fréquences et discutez des résultats expérimentaux.
Discute des réseaux neuronaux convolutifs, de leur architecture, des techniques de formation et des défis tels que des exemples contradictoires en apprentissage profond.
Introduit des réseaux neuronaux convolutionnels (RCN) pour les véhicules autonomes, couvrant l'architecture, les applications et les techniques de régularisation.
Couvre les réseaux neuronaux convolutionnels, y compris les couches, les stratégies de formation, les architectures standard, les tâches comme la segmentation sémantique, et les astuces d'apprentissage profond.