Couvre la variation de la méthode des constantes pour résoudre les équations différentielles linéaires du premier ordre, détaillant ses étapes et ses implications pour les solutions générales et particulières.
Couvre la résolution des équations différentielles inhomogènes linéaires et la recherche de leurs solutions générales en utilisant la méthode de variation des constantes.
Discute des méthodes de résolution des équations différentielles linéaires du premier ordre, en se concentrant sur la séparation des variables et la méthode des facteurs dintégration.
Couvre la résolution numérique d'un problème de Cauchy en utilisant la séparation des variables et discute des conditions de l'intervalle de définition de la solution.
Couvre le problème de Cauchy dans les équations différentielles, en se concentrant sur les conditions initiales et leur impact sur lunicité de la solution.